Zero downtime deployments
with DB changes

@sebdehne

A Systek

woo syybnoypiieyo

buildipedia.com

fastcodesign.com

Agile development

Refactor

Daytime
deployments

Continuous New webshop for:

delivery /
= 4

Short time to

market Low maintenance
costs

Opening hours:
24[7

Agile
development

A Systek

SCTVIEIERIE

New webshop for:

<

Requirement #1 - able to deploy without interruptions

Requirement #2 - ability to refactor code and database

Blue/green deployments

Blue/green deployments

App v1

Load-
balancer

> App v1

App v1

Shared-
database

Blue/green deployments

App v1

Load-
balancer

> App v1

App v1

Shared-
database

Blue/green deployments

App v1

Load-
balancer

> App v1

. Shared-

App v1

database

Blue/green deployments

App v2

Load-
balancer

> App v1

. Shared-

App v1

database

Blue/green deployments

App v2

Load-
balancer

> App v1

App v1

Shared-
database

Blue/green deployments

App v2

Load-
balancer

App v1

App v1

Shared-
database

Blue/green deployments

App v2

Load-
balancer

App v2

App v1

Shared-
database

Blue/green deployments

App v2

Load-
balancer

> App v2

App v1

Shared-
database

Blue/green deployments

App v2

Load-
balancer

> App v2

\ Shared-
database

App v1

Blue/green deployments

App v2

Load-
balancer

> App v2

\ Shared-
database

App v2

Blue/green deployments

App v2

Load-
balancer

> App v2

App v2

Shared-
database

And now with DB changes... oh yeah

App v2
— /
balancer \ A

App v1

Shared-
database

Example case

Individual

Individual

Id

FirstName
LastName
StreetName
HouseNumber
City

Id

FirstName
SIGEINE
StreetName
HouseNumber
City

Schema version: 1

Schema version: 2

The “naive approach”

App v1

setLastName (n) {
lastName = n;

}

App v2

setSurname (n) {
surname = n;
lastName = n;

}

getLastName () {
return lastName;

}

getSurname () {

return surname ==
lastName
surname;

null °?

App v3

setSurname (n) {
surname = n;

}

getSurname () {
return surname;

}

The naive approach - rollout process

Add new field surname to schema

Deploy app version 2 using green/blue deployment
Copy all values from lastName -> surname

Deploy app using green/blue deployment
Remove unused field lastName from schema

o kW=

... Easy, or?

Why is the “naive approach” broken?

ID lastName | surname

1 8rhitk

1. App v2 writes: (lastName, surname) = “Smith”
2. App v1 writes: lastName = “Johnson”

3. App v2 reads: getSurname() == “Smith”
App v2
Load- Shared-
App v1

Conclusion: Cannot use the field value

as an indication for which version
an object is at

getsuarname () {
return surname == ni2ll °
lastName :
surname;

}

Store the version of the object

explicitly
along with the object

Fixed

App v1

setLastName (n) {
lastName = n;
version = 1;

App v2

Individual

Id

version
FirstName
LastName
Surname
StreetName
HouseNumber
City

setSurname (n) {
surname = n;
lastName = n;
version = 2;

getLastName () {
return lastName;

getSurname () {
return version ==
lastName
surname;

1

App v3

setSurname (n) {
surname = n;
version = 2;

getSurname () {
return surname;

A Systek

Decouple DB version / app version

Individua

Id

Version
FirstName
LastName
Surname
StreetName
HouseNumber
City

App v1 App v2
setLastName (n) { setSurname (n) {
version = 1; version = config.dbVersion() ;
lastName = n; if (version == 2)
} surname = n;
else
lastName = n;
}
getLastName () { getSurname () {
return lastName; return version == 1 ?
} lastName
surname;
}

Decouple version mapping

from DTOs

Individ

ual

Id

Surname

City

FirstName

StreetName
HouseNumber

Runtime
config

getWrite}/ersion()

Version-

Business logic

Mapper

Persistence layer

Individual V1

Id

Version
FirstName
LastName
StreetName
HouseNumber
City

Individual V2

—

Id

Version
FirstName
Surname
StreetName
HouseNumber
City

VersionMapper:

// upgrade
if (targetVersion > entity.getSchemaVersion()) {
for (int v = entity.getSchemaVersion(); v < targetVersion; v++) {
entity = translators.get(v) .upgrade (entity) ;
}
}

// downgrade
else {
for (int v = entity.getSchemaVersion(); v > targetVersion; v--) {

entity = translators.get(v) .downgrade (entity) ;
}

My talk @ JavaZone 2015

Persistence VersionMapper

Persistence model v1 Persistence model v2 Persistence model v3

DB Driver / Client

. This talk :-)

Improved rollout process

App v1 App v1 App v1
S NS NS
S 81e B81E
ol< U] ES ols
|2 |= x|=

.

\4

¢

VersionMapper VersionMapper VersionMapper

A

Read: v1
Write: v1

\ B ‘ Systek

App v2 App v1

>
°
©

<

—

Read: v2
Write: v2
Read: v1
Write: v1
RCE YA
Write: v1

-

\4

¢

VersionMapper VersionMapper VersionMapper

A

Read: v1
Write: v1

\ B ‘ Systek

App v2 App v2

>
°
©

<

—

Read: v2
Write: v2
RCE YA
Write: v1

Read: v2
Write: v2

-

4

¢

VersionMapper VersionMapper VersionMapper

A

Read: v1
Write: v1

\ B ‘ Systek

App v2

Read: v2
Write: v2

-

VersionMapper

App v2

Read: v2
Write: v2

4

VersionMapper

A

Read: v1
Write: v1

App v2

Read: v2
Write: v2

<

VersionMapper

‘ Systek

App v2 App v2 App v2

S5 S S
E I S
ol ol (0] BS
x| |= x|=
4 y 4

VersionMapper VersionMapper VersionMapper

A o/ A

"Read: Al

setWriteSchemaVersidn(Z)
@runtime

\ B ‘ Systek

App v2

Read: v2
Write: v2

-

VersionMapper

App v2

Read: v2
Write: v2

-

VersionMapper

,v2>

Read: v1
Write: v2

App v2

Read: v2
Write: v2

<

VersionMapper

‘ Systek

App v2 App v2 App v2

Y s s
o2 ko B2 o] BS
[J] £ ol olE
4 B= x|= x|
F==—====-=--= , .
I Same code :/ VersionMapper VersionMapper VersionMapper
Q)
>'\
SIS
g= [
S|E
x|

Migration script
@runtime —3

(touches all objects)

VersionMapper

App v2

Read: v2
Write: v2

-

VersionMapper

App v2

Read: v2
Write: v2

4

VersionMapper

A

Read: v2
Write: v2

App v2

Read: v2
Write: v2

<

VersionMapper

ﬁ Systek

Summary rollout

LN

Deploy app v2 using green/blue deployment

Add new field surname to schema

Set config.dbVersion=2 @runtime

Run migration script to upgrade all objects to schema version=2
Remove unused field lastName from schema

No second round deployment needed
DB Schema changes done independently from app deploy

A Systek

Versioning schemes

A word about versioning schemes

Domain model version

coupled

Persistence VersionMapper

Schema Schema Schema
DTO v1 DTO v2 DTO v3

DB Schema version

DB Driver / Client

> Code version

/

Versioning example

Code version:

API versions:

Domain model version:
DB schema versions:

df2llcc e6888f7 fb3a968 e3fc833 affaleb
1,2 1,2 1,2,3 2,3 2,3
2 % 3 3 3
1,2 % 2,3 2,3 3
>
Time

Which database technology?

Doing this in SQL is hard(er)

e Problem: objects have different schema versions
e Need two queries:
o Read the object’s version
o Create a version-specific query to fetch the target object
e Both queries need to be atomic
e Requires transaction isolation level “SERIALIZABLE” and
“SELECT ... FOR UPDATE"

Doing this in SQL is hard(er) - 2

ALTER TABLE require table lock

ALTER TABLE cause pauses (=unavailability)
Disable constraints/indexes

What about triggers and stored procedures?

Doing this in SQL is hard(er) - 3

SQL schemas are not meant to be used for a per-object
schema

Hard to change datatype: String birthdate -> Int birthdate
Need to use temporarily fields/tables which result is a more
complex migration process

.. which limits the number of versions you can roll back to!

noSQL is more suited for the job

Supports per-object schema

If you can, just use a key/value store

Use CAS (compare-and-swap) as the transaction primitive
Optimistic locking for all transactions

Better performance without compromising consistency
Schema deploy easier, no need to run ALTER TABLE - just
start writing in the new format

noSQL is more suited for the job

e Need to fetch the object only once

e The version can be stored inside the same object in a header

e Before unmarshalling the entire object, parse only the header to
learn the version

e Keep as many historic schema versions “around” as desired for
the rollback strategy

e Remove old versions from code and DB as suited

How to query across objects?

One query per schema version and merge the results?
What about paging and sorting

Best to avoid queries across object at all

Or....

Setup a search index per
“domain model version”

Index coupled to domain model version

Search
index

Persistence VersionMapper

Indexer

Schema Schema
DTO v1 DTO v2

DB Driver/ Client

Shared-
database

‘ Systek

Embedded index

App v1
Indexer < read
Search
Index V1
Load- write Shared-
App v2
Indexer € e

Search
Index V2

External index

- Search
Appvi <=~ -~ Index V1

Shared-
database

Indexer
V1

Load-
balancer

|

App v2

~ Indexer

So V2
Appv2 _ __ ____ Search
é

Summary

Can rollout new code without interruptions

Can rollout db schema changes without interruptions

Both production- and test environments have high availability
Can deploy during daytime and sleep at night; in theory :-)
Correctness during the transition phases

Can leave the system in an intermediate state if needed

Can rollback to many versions, not just 1

Supports business with short time to market

Embraces refactoring to keep maintenance costs low

A Systek

Questions?

Thanks

